

Pricing the Carbon right: The case of the Everglades mangroves

Mahadev G. Bhat1

Meenakshi Jerath¹
Victor H. Rivera Monroy²
Edward Castañeda-Moya²
Marc Simard³
Robert Twilley²

¹Florida International University, ²Louisiana State University, ³Caltech-Jet Propulsion Laboratory

Introduction

- Mangroves and ecosystem services
 - Global primary production 218 ± 72 Tg C yr⁻¹
- Carbon storage (C stock) and sequestration (rate of removal)
 - Mitigates climate change effects
- Global threats to mangroves
 - deforestation, global warming
- Economic valuation of carbon sequestration and storage

Mangrove forests of Everglades National Park

Total area 144,447 ha

Map source: F

Mangrove Forests of ENP

Everglades Mangrove Ecotone Region (EMER)

- Subtropical
- Carbonate platform
- Oligotrophic
- P- the limiting nutrient
- "Upside down estuary" (Childers et al. 2006)
- High productivity
- Not threatened by direct human impact

(unlike other mangrove forests)

Environmental gradients

Hurricane events

Riverine Mangroves
Shark River Slough
(SRS)

Scrub mangroves
Taylor River Slough
(TS)

ENP Mangroves Pulses Presses Water 15 management 12 Sea level rise **FCE-LTER** Urban Simard et al. (2006) development Varying spatial and temporal scales (Photograph: FCE LTER)

Economic valuation of C storage

Challenges

- Large uncertainty in C storage estimations of coastal wetlands (Hopkinson et al, 2012)
 - Variability and uncertainty in mangrove production and C accumulation through space and time (Alongi, 2011)
 - C storage temporary
 - C cycling dynamic: hydrological conditions regulate exchange of organic and inorganic C b/w land and water
 - Wetland expansion reduced by human impacts
 - **But** keep in mind the unique protected nature of Everglades mangroves

Our estimation of C storage, therefore, a rental value of "parking" the organic C, not the fixed value of C in the biological pool

Economic valuation of C storage

Challenges

- Lack of well developed C markets
- Economic valuation varies with methodologies
- C prices influenced by technological, regulatory, economic, social factors
- Value transfer inappropriate
 - Distinct geographical location, ecogeomorphic characteristics, nature of presses and pulses that affect mangrove functions

Economic valuation of C storage

Challenges

- Market failure problem of a global public good
- Under valuation in private markets
- Contested ecosystem service policy
- Ignored by policy makers

Purpose of our study

- First estimation of total organic C storage in mangrove forests of the Everglades National Park
- Economic valuation of the total organic C storage
- Hypotheses:
 - Significant organic C storage, particularly belowground
 - Higher economic value because of protected nature of the forest and ecogeomorphic attributes

Landscape level estimation of Total Organic Carbon $TOC = Aboveground\ TOC + Belowground\ TOC\ (Roots + Soil)$

Mean tree height (Simard et al., 2006)

Standing Biomass distribution (Rivera-Monroy et al., 2011)

Carbon Conversion factor = 0.44 (Ewe et al., 2006)

Landscape level estimation of Total Organic Carbon $TOC = Aboveground\ TOC + Belowground\ TOC\ (Roots + Soil)$

Aboveground Carbon in Standing Biomass of ENP mangroves

Carbon Conversion factor = 0.44 (Ewe et al., 2006)

FCE-LTER Study Site	Soil Organic Carbon MgC/ha (0.9m)	Total Organic Carbon MgC/ha
SRS-4	373.5 ± 23.8	421
SRS-5	476.1 ± 14.2	518
SRS-6	365.4 ± 7.7	437
TS/Ph-6	28.8 ± 3.8(.12m)	34
TS/Ph-7	450 ± 27.7	456
TS/Ph-8	291.4 ± 18.3	293
Mean	330.87 ± 66.1	

Landscape level estimation of Total Organic Carbon $TOC = Aboveground\ TOC + Belowground\ TOC\ (Roots + Soil)$

Landscape level estimation of Total Organic Carbon $TOC = Aboveground\ TOC + Belowground\ TOC\ (Roots + Soil)$

Mangrove Forest Component	Mean Estimate (Mg C/ha)	Standard Deviation	Total Organic Carbon (Mg C)
A la consequencial	14.15	11 20	1 702 010
Aboveground Organic Carbon	14.15	11.29	1,792,019
Belowground Organic Carbon	330.87	161.92	
Total Organic Carbon	345.01	162.31 ^d	43,705,154 (23,144,243 – 64,266,065)

Mangrove Forest Carbon Storage in ENP, Florida

Comparison of Carbon Stocks in Terrestrial Ecosystems and Mangroves

Ecosystem	Mean Estimate of C (Mg C per hectare)	Source
Tropical	242	Pan et al., 2011
Temperate	155	Pan et al., 2011
Boreal	239	Pan et al., 2011
Tropical Mangroves	1023	Donato et al., 2011
ENP Mangroves	345 ± 162.31	This study

Selection and Development of C Prices

Valuation methodolo gy	Source	Cost of Carbon (\$/ton)	Value of C Storage (\$/ha)	Mean estimate (\$/ha)	Total Value (\$)	Mean estimate (billion \$)
Social Cost of Carbon	Peer reviewed ^a (Tol, 2011)	80	27,601	22,426	3,496,412,321	2.84
	U.S. Interagency report ^b , 2010	86	29,671		3,758,643,245	
	Tol, 2011	59	20,356		2,578,604,087	
	Nordhaus	35	12,075		1,529,680,390	

Social Cost of Carbon

WTP of society to avoid damages caused by C emissions

Every unit of sequestered C has the ability to prevent damage

from occurring

Selection and Development of C Prices

Valuation methodolo gy	Source	Cost of Carbon (\$/ton)	Value of C Storage (\$/ha)	Mean estimate (\$/ha)	Value of C storage (\$)	Mean estimate (billion \$)
Marginal Abatement Cost	Globalize d MAC ^c	233	80,387	41,211	10,183,300,884	5.22
	Fisher and Nakiceno vic et al., 2007 ^d	129	44,506		5,637,964,867	
	Stavins and Richards, 2005	70	24,151		3,059,360,781	
	CERP	45.8	15,801		2,001,696,054	

Marginal Abatement Cost

Cost of maintaining/reducing C emissions
Cost of restoring/preserving existing mangrove, stored Carbon

Selection and Development of C Prices

Valuation methodol ogy	Source	Cost of Carbon (\$)	Value of C Storage (\$/ha)	Mean estimate (\$/ha)	Value of C storage (\$)	Mean estimate (billion \$)
Market price	EU ETS ^g	79	27,256	12,190	3,452,707,167	1.54
price	CER ^h	46	15,870		2,010,437,084	
	secondary CERs	40	13,800		1,748,206,160	
	RGGI ⁱ	7	2,415		305,936,078	
	VER ^j	22	7,590		961,513,388	
	REDD ^k	18	6,210		786,692,772	

Market Price of Carbon

Individual WTP for Carbon storage/ sequestration

Ecological Criteria for Valuation

- Variability in ecosystem services and functions
 - Sequestration non-linear, varies with time and space in coastal ecosystems
 - Distinct geomorphic settings (e.g., delta vs. karstic)
 - Landscape level disturbances
- Forest age
 - Mature, intact forests
 - Interconnectivity, functional redundancy, variety of ecosystem services (Alongi, 2012; Rivera-Monroy et al., 2013)
- Status of ENP mangroves as a protective area
 - Regulate climate through C storage
 - Limited/no extractive uses → significant sinks of C
 - ENP mangroves unique
 - Not influenced by direct or indirect extractive uses
 - Higher restrictive IUCN management category, more effective

Economic Valuation of the Carbon Stored in EMER

Valuation Methodology	Туре	\$/ton C	\$/ha	Total Value of Everglades mangrove C
Market Price	RGGI	7	2,415 (1,281–3,549)	\$306 million (\$162 – 450 million)
Marginal Abatement Cost	Average abatement cost of C for the Everglades mangroves		15,801 (8,381–23,221)	\$2 billion (\$1.06– 02.94 billion)

Conclusion

- Landscape level C value of Everglades mangroves
 - Ecological attributes
 - Status as a protected area
 - Economic and political environment
- Change in public perception about C storage, global benefits
- Foster robust C markets
- Effective management strategies
- Assist policy dialogues
- Cost of inaction derived from social cost of C (\$22,426/ha)
- Cost of mangrove restoration in the Everglades from average abatement cost (\$45.8/tC)

Limitations

- Wide range of C values
 - Variation in C stock across landscape spatial gradient in biomass distribution
 - Need for more long-term sampling points across the Everglades
 - Ecosystem service maps
- No single economic value of C
 - Must be used in appropriate context
- C storage and sequestration only one of the many services that mangroves

ACKNOWLEDGEMENT

- National Science Foundation
 - Water and Climate Sustainability program (Award # EAR-1039223)
 - Florida Coastal Everglades Long-Term Ecological Research program (Grant No. DEB-9910514, Grant No. DBI-0620409, and Grant No. DEB-1237517)
- NASA-JPL project
 - Vulnerability Assessment of Mangrove Forest Regions of the Americas (LSU Subcontract# 1452878)
- Dr. Keqi Zhang, Daniel Gann, and Himadri Biswas of Florida International University, for their valuable support in using GIS methodology.

